# 3.2 Compound & Double Angle Formulae

# **Question Paper**

| Course     | CIEA Level Maths                     |  |
|------------|--------------------------------------|--|
| Section    | 3. Trigonometry                      |  |
| Topic      | 3.2 Compound & Double Angle Formulae |  |
| Difficulty | Very Hard                            |  |

Time allowed: 90

Score: /73

Percentage: /100

- (i) Prove that sin(A B) = sin A + sin B is **not** true in general.
- (ii) Find values for A and B, with  $A \neq 0$  and  $B \neq 0$ , for which  $\sin(A B) = \sin A + \sin B$  is true.

[3 marks]

#### Question 2a

(a) Use the identities  $\sin(A \pm B) \equiv \sin A \cos B \pm \cos A \sin B$  and  $\cos(A \pm B) \equiv \cos A \cos B \mp \sin A \sin B$  to show that

$$\sin(X + Y - Z) \equiv$$

$$\sin X \cos Y \cos Z + \cos X \sin Y \cos Z - \cos X \cos Y \sin Z + \sin X \sin Y \sin Z$$

[3 marks]

#### Question 2b

(b) Hence show that  $\sin(165^\circ) = \frac{\sqrt{6} - \sqrt{2}}{4}$ .

Show that

$$\tan 2A \equiv \frac{2 \tan A}{1 - \tan^2 A}$$

State clearly any trigonometric identities you use to show this result.

Given that  $a \sin \theta + b \cos \theta$ , where a and b are positive constants, is to be written in the form  $R \sin(\theta + \alpha)$ , find expressions for:

- (i)  $\alpha$  in terms of a and b
- (ii) R in terms of a and b

[6 marks]

# Question 5a

(a) Solve the equation

$$\cos 2\theta = \cos \theta$$
  $0 \le \theta < 2\pi$ 

[5 marks]

www.mikedemy.com

## Question 5b

(b) Solve the equation

$$\tan 2x = 3 \tan x$$
  $-\pi \le x \le \pi$ 

[6 marks]

Question 6

Show that

 $\tan 2\theta \tan \theta \equiv \sec 2\theta - 1$ 



| 15 | m | าลเ | ſK | s |
|----|---|-----|----|---|

#### Question 7a

(a) Show that  $5 \sin \theta - 3 \cos \theta$  can be written in the form  $R \sin(\theta - \alpha)$  where  $R = \sqrt{34}$ , and  $\alpha = 0.540$  radians correct to three significant figures.

[4 marks]

#### Question 7b

(b) Use your result from part (a), and the properties of the sine and cosine functions, to solve the equation

$$3\cos 2x + 5\sin 2x = 0.4$$

$$0 \le x \le 2\pi$$



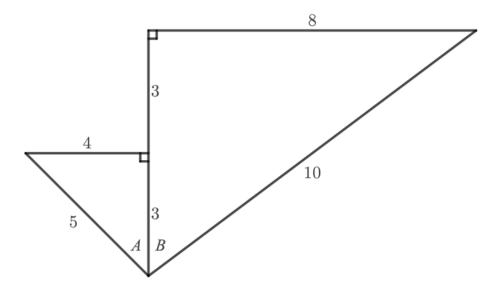
| ſ5 | ma   | rks  |
|----|------|------|
| _  | 1114 | 1113 |

#### Question 8a

(a) Use an identity for  $\cos 2A$  to derive an identity for  $\cos 4A$ , in terms of  $\cos A$ .

[4 marks]

# **Question 8b**


(b) Hence, or otherwise, solve the equation

$$2\cos 4x = 7\sin^2 x - 2$$

$$0 \le x \le \pi$$

[5 marks]

The diagram below shows two right-angled triangles. Angles  ${\cal A}$  and  ${\cal B}$  have been labelled.



Given that  $\alpha = A + B$ , find the exact values of  $\sin \alpha$ ,  $\cos \alpha$  and  $\tan \alpha$ .

[7 marks]

| WW. | mikeden    | nv.com        |
|-----|------------|---------------|
|     | 1111100011 | 1 9 . 0 0 1 1 |

- (i) Explain briefly why  $\theta = 0$  is **not** a solution to the equation  $3\theta \cot 2\theta = 0$ .
- (ii) By using an appropriate approximation, determine the value of

$$\lim_{\theta \to 0} 3\theta \cot 2\theta$$

#### Question 11a

The alternating voltage, V, in a domestic electrical circuit, t seconds after it is switched on is modelled by the function

$$V = 115 \sin \omega t + 115\sqrt{3} \cos \omega t.$$

(a) Express

$$115 \sin \omega t + 115\sqrt{3} \cos \omega t$$

in the form

$$R\sin(\omega t + \alpha)$$

where *R* and  $\alpha$  are constants to be found. R > 0 and is  $\alpha$  acute.

[2 marks]

#### Question 11b

In the UK, domestic electricity runs at a frequency, f, of 50 Hertz (Hz). The constant  $\omega$ , is given by  $\omega = 2\pi f$ .

- (b) (i) Find the initial voltage when a domestic appliance (such as a kettle or TV) is switched on.
  - (ii) Find the time at which the voltage first turns negative.

# Question 11c

- (c) (i) Find the period of one cycle of voltage in the UK.
  - (ii) In the US, the period of one cycle is  $\frac{1}{60}$  seconds. Write down the frequency of US domestic electricity.

[2 marks]